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We explore the expressive power of languages that naturally model biochemical

interactions with relative to languages that naturally model only basic chemical

reactions, identifying molecular association as the basic mechanism that distinguishes

the former from the latter. We use a process algebra, the Biochemical Ground Form

(BGF), which extends with primitives for molecular association CGF, a process algebra

proved to be equivalent to the traditional notations for describing basic chemical

reactions. We first observe that, differently from CGF, BGF is Turing universal as it

supports a finite precise encoding of Random Access Machines, a well-known Turing

powerful formalism. Then we prove that the Turing universality of BGF derives from the

interplay between the molecular primitives of association and dissociation. In fact, the

elimination from BGF of the primitives already present in CGF does not reduce the

computational strength of the process algebra, while if either association or dissociation

is removed then BGF is no longer Turing complete.

1. Introduction

In this paper we investigate the computational strength of a process algebra that aims
to capture the essential primitives of biochemistry. Biochemistry is obviously based on
chemistry, and in principle one can always express the behavior of a biochemical system
by a collection of chemical reactions. But there is a major practical problem with that
approach: the collection of reactions for virtually all biochemical systems is an infinite
one. For example, just to express the chemical reactions involved in linear polymerization
which is common in biochemical systems, we need to have a different chemical species
for each length n of polymer Pn, with reactions to grow the polymer: Pn +M → Pn+1.
While each polymer is finite, the set of possible polymerization reactions is infinite. Na-
ture adopts a more modular solution: each monomer obeys a finite simple set of molecular
association and dissociation rules that leads to the formation and breakup of polymers
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of any length; therefore, it seems that there should be a finite way of describing such
systems. One can start by writing pseudo-reactions like P + M → P :M , where P :M
is meant to represent a P (olymer) molecule attached to an extra M(onomer), yielding a
longer polymer. However, there are in general many possible ways (that is, many different
patches on the surface of a molecule) by which one molecule can exclusively attach to
other molecules, and soon one needs to describe the interface of each molecule. This situ-
ation, while not commonly found in basic chemistry, is particularly acute in biochemistry,
where virtually all reactions are governed by enzymes and molecular machines, which are
themselves often built by molecular association, and which usually operate by associating
with their reactants.

The intuitive idea of a biomolecule as a stateful entity with a connectivity interface
is now common. Notations have emerged from biology that use such an idea to describe
large biochemical systems (Kohn et al. 2006; Kitano et al. 2005). Many formalized and
computerized approaches are currently being developed, including: practical tools, where
molecules are drawn as boxes with connecting lines (Danos et al. 2007); graph-rewriting
and term-rewriting systems where a molecular complex is represented as a graph or term,
and a reaction is a graph or term rewrite (Danos and Laneve 2004; Credi et al. 2007); cod-
ing techniques in process algebra, where molecular association can be expressed via some
advanced features (Priami et al. 2001); and finally, specialized process algebras where
molecular interfaces and association are taken as primitive (Priami and Quaglia 2004;
Cardelli and Pradalier 2005). All these approaches aim to find a descriptive framework
that goes beyond simple chemical reactions, and that can be used to represent common
biochemical situations finitely and modularly.

The aim of this paper is then to determine the inherent difference in expressive power
between notations for basic chemical interactions and notions for biochemical interac-
tions. That is: what is the intrinsic power of molecular association that gives it the ability
to represent finitely what would otherwise have an infinite representation? To clarify this
issue we study a formal system, the Biochemical Ground Form (BGF), that we propose
in this paper as a minimalistic extension of the Chemical Ground Form (Cardelli 2008)
(CGF) with association and dissociation. CGF is a process algebra based on the notion of
molecules as stateful entities which was proved to be equivalent to other commonly used
notations for basic chemical interactions. Namely, given the description of a chemical sys-
tem given in terms of a finite stochastic chemical reaction network (SCRN) (Soloveichik
et al. 2008) there exists an equivalent system expressed in CGF, and vice versa.

As already mentioned, many richer formalisms can represent molecular association,
but they also include mechanisms that have no direct biological implementation. Our
proposal is minimalistic in the following sense: it adds only two basic actions called asso-
ciation and dissociation. Association allows two molecules to form a complex, dissociation
allows them to subsequently break such a complex. Between these two events, the two
molecules can still freely interact with other molecules or among themselves. In other
more expressive formalisms (see for instance the so-called exchange reactions in (Credi
et al. 2007)) it is possible to specify events that change the internal state of one molecule
only if it is associated with another one having a particular state.

Forms of organized molecular association and dissociation exist in inorganic chemistry,
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but certainly not to the extent in which they are found in biochemistry, where they are
the foundation of molecular machines, information processing, metabolism, and mem-
branes, both structurally and functionally. In this respect, the first contribution of this
paper is the formalization of the following inherent expressiveness gap between SCRN
and notations for biochemical interactions: the CGF is not Turing complete (this result
was proved in (Zavattaro and Cardelli 2008)) while its minimalistic extension BGF is
already Turing complete. After proving this result, we look for minimal sets of primitives
that make BGF Turing complete. The aim is to have a deeper understanding of the basic
mechanisms that distinguish biochemical notations from SCRN. We prove that all prim-
itives that BGF inherits from CGF can be removed from the model without reducing
its computational strength. On the contrary, if either the association primitive or the
dissociation primitive is removed then BGF is no longer Turing complete. This allows us
to conclude that both the association and the dissociation primitives are sufficient and
necessary for making BGF Turing universal.

Structure of the paper

The paper is structured as follows. In Section 2 we give the definition of BGF. In Section 3
we prove that BGF is Turing complete. In Section 4 we prove that the process algebra is
still Turing complete even if we remove all primitives but association and dissociation.
In Sections 5 and 6 we prove that BGF is no longer Turing complete if we remove either
the association or the dissociation primitives, respectively. Finally in Section 7 we give
some concluding remarks.

A preliminary version of this paper appeared in (Cardelli and Zavattaro 2008). In
the present paper we consider a more general version of BGF (in which also molecules
inside complexes can split) and we prove new original results (those reported in the
Sections 4, 5, 6).

2. Biochemical Ground Form

In this section we give the definition of the Biochemical Ground Form (BGF). We first
informally introduce the notation, then we give the formal syntax and semantics.

As discussed in the Introduction, BGF is the extension of the process algebra CGF (Cardelli
2008) with association and dissociation. In this presentation of BGF we abstract away
from the stochastic semantics † as it is not relevant for the results about Turing com-
pleteness and decidability we are going to discuss in this paper. We start presenting the
features of BGF inherited from CGF.

The basic ingredient of the process algebra is the notion of chemical species. Each
chemical species has an associated definition indicating the actions that the molecules
belonging to the species can perform. There are three possible actions in CGF, internal
actions τ , input actions ?a, and output actions !a. Action τ indicates the possibility for

† The interested reader can refer to (Cardelli 2008) for the stochastic semantics of CGF and to (Cardelli

and Zavattaro 2008) for the stochastic semantics of BGF.
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a molecule to be engaged in a unary reaction. For instance, the definition A = τ ; (B|C)
is used to specify the possibility for one molecule of species A to be engaged in a unary
reaction that produces two molecules, one of species B and one of species C (the operator
“|” is borrowed from process algebras such as CCS (Milner 1989), where it represents
parallel composition, and corresponds here to the chemical “+”). Binary reactions have
two reactants. The two reactants perform two complementary actions: input ?a and
output !a, where a is a name used to identify the reaction. For instance, given the
definitions A =?a;C and B =!a;D, we have that two molecules of species A and B can
be engaged in a binary reaction that produces two molecules, one of species C and one
of species D. If the molecules of one species can be engaged in several reactions, then
the corresponding definition admits a choice among several actions. The syntax of choice
is as follows: A = τ ;B⊕?a;C, meaning that molecules of species A can be engaged in
either a unary reaction that produces a molecule of species B, or in a binary reaction
with another molecule able to execute the complementary action !a. In the second case,
the molecule of species A contributes to the reaction by producing a new molecule of
species C.

Example 1 (Two-stations rotaxane). We consider two-stations rotaxanes (Sauvage
and Dietrich-Bucheker 1999) (simply called rotaxanes in the following), which are supramolec-
ular systems composed of an axle surrounded by a ring-type molecule. Bulky chemical
moieties (“stoppers”) are placed at the extremities of the axle to prevent the disassembly
of the system. In rotaxanes containing two different recognition sites on the axle (“sta-
tions”), it is possible to switch the position of the ring between the two stations by an
external energy input (called the “stimulus”) as illustrated in Figure 1. Upon stimulation,
the energy curve is modified in such a way that the equilibrium for the ring changes.

Fig. 1. Representation of a rotaxane with stations A and B (a) and its energy curves

before (b) and after (c) the stimulus activating the ring movement from A to B.

According to the approach described above, we can model the behavior of a rotaxane
with two stations, namely A and B, which interacts with molecules of species S that
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stimulate the movement of the ring. We consider four distinct species: RA (resp. RB)
representing the nonstimulated rotaxane with the ring in position A (resp. B), and RAs
(resp. RBs ) representing the stimulated rotaxane with the ring in position A (resp. B).

We can consider the following definitions for these species:

RA = ?a to b;RAs
RB = ?b to a;RBs
RAs = τ ;RB

RBs = τ ;RA

S = !a to b; 0⊕!b to a; 0

where 0 specifies the fact that there is no product (i.e. the stimulus degrades after the
reaction with the rotaxane).

We now move to association and dissociation, the new features of BGF with respect
to its predecessor CGF, which are modeled by two new pairs of complementary actions:
&?a,&!a for association and %?a,%!a for dissociation. We now introduce them informally
by means of examples.

Example 2 (Linearly growing polymer). Each association event involves exactly
two partners. We imagine that the partners have two complementary surface patches
that can interlock. If c represents a surface shape (say, a paraboloid), then !c indicates
one of the two patches (say, the convex one) and ?c indicates the complementary patch
(the concave one). Then, &!c is the action that presents the convex patch, and &?c is
the action that presents the concave patch. When two such association actions meet, an
actual association event can take place, joining the two complementary surfaces.

A linearly growing polymer could be represented as follows, using a seed S and a
collection of equal monomers M . The seed starts the chain by presenting a concave
patch ?c: this is our initial, zero-length, polymer. Each monomer presents a convex patch
!c, which can bind with an existing polymer on the complementary concave patch. After
(and only after) such a binding, a bound monomer M ′ presents another concave patch
?c, so that the polymer can keep growing. Both the seed and each monomer can have
further behavior, S′ and M ′′.

S = &?c;S′

M = &!c;M ′

M ′ = &?c;M ′′

Each association event creates a unique bond between exactly the two molecules that
are joined to each other. This bond needs to be represented somehow, to make sure that
a molecule can bind with only one other molecule at a time on any given patch. We
represent such a bond as a unique key k that is shared by the two molecules (think of k
as a fresh number, or as a fresh channel in π-calculus (Milner 1989)). Such unique keys,
and related information, are collected in the association history of each molecule. So, the
first interaction of an S with an M , which initially have empty association histories (0),
proceeds as follows:

S0 | M0 → S′〈?c,k1〉 | M
′
〈!c,k1〉
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Interaction with a second monomer then introduces a second fresh key in the histories:

S0 | M0 | M0 → S′〈?c,k1〉 | M
′
〈!c,k1〉 | M0 → S′〈?c,k1〉 | M

′′
〈?c,k2〉::〈!c,k1〉 | M

′
〈!c,k2〉

This mechanism of creation of fresh association keys is repeated every time a new asso-
ciation is created between a monomer and the subsequent one.

It is worth observing that, in any reachable configuration, we can reconstruct from
the association histories who is bound to whom, and on what surface the bond was
formed. Note that the description of the system is finite (3 reagents, S, M , M ′), but
that polymers of any length can be assembled (assuming the initial availability of a
corresponding amount of monomers). Moreover, as associations cannot occur on surfaces
that are already occupied, we have that association histories are bounded; namely, the
maximal length of an association history is given by the statically defined number of
surfaces of the molecule which the association history belongs to.

Example 3 (Branching polymer). After association, a molecule is still free to perform
additional associations or other interactions. That is, association places no restrictions on
the behavior of the original molecules, except for the fact that new associations cannot
occur on surfaces that are already occupied, and that dissociations must happen consis-
tently with prior associations (as we discuss shortly). To illustrate this freedom, let us
modify the previous example and allow each bound monomer to offer a seed for growing
a new polymer branch:

S = &?c;S′

M = &!c;M ′

M ′ = &?c;M ′′

M ′′ = &?d;M ′′′

N = &!d;N ′

N ′ = &?c;N ′′

Where an M ′′ can bind through the interface d to an adaptor molecule N , which then
offers another c surface for branching.

Example 4 (Actin-like polymer). Dissociation is the inverse of association, that is,
two formerly joined molecules can separate. We indicate by %!c the attempt to dissociate
from the convex side, and %?c the attempt to dissociate from the concave side. When two
associated molecules attempt complementary dissociations, an actual dissociation event
can take place. To illustrate this situation, we describe a different kind of linear polymer:
one that can grow only at one end, and can shrink only at the other end. There are
four molecular states for each monomer: Mf (free monomer), M l (monomer bound on
the left), Mr (monomer bound on the right), and M b (monomer bound on both sides).
Each monomer has a left convex surface and a complementary right concave surface. A
polymer should associate (grow) only on the right and should dissociate (shrink) only on
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the left.
Mf = &!c;M l ⊕&?c;Mr

M l = %!c;Mf ⊕&?c;M b

Mr = %?c;Mf

M b = %!c;Mr

A free monomer Mf can either associate on the left convex surface and become bound
on the left, or associate on the right concave surface and become bound on the right. A
monomer M l bound only on the left can either dissociate on the left (if allowed by its
partner, which must in fact be an Mr in this case) and return free, or associate on the
right (with an Mf ) and become bound on both sides. A monomer Mr bound only on
the right can only dissociate on the right: that is, a polymer cannot grow on the left. A
monomer M b bound on both sides can only dissociate on the left (with an Mr): that is,
a polymer cannot shrink on the right or break in the middle. These rules cover also the
base cases when a polymer of length 2 initially forms or finally dissolves.

A dissociation should succeed only between a pair of molecules that were actually
associated in their past history, and this can be checked by inspecting the unique keys
introduced during association. For example let us consider two Mf molecules that asso-
ciate and then immediately dissociate:

Mf
0 | M

f
0 →M l

〈!c,k〉|M
r
〈?c,k〉 →Mf

0 |M
f
0

The second transition is allowed to happen because M l offers %!c, Mr offers the comple-
mentary %?c, and the same key k appears in both association histories on the c interface
(and with the correct convexity). As a consequence of dissociation, the keys are removed
from the histories.

Example 5 (Unbounded linearly growing and shrinking polymer). Recursive
definitions of the species behavior allows us to specify systems in which an unbounded
number of monomers can be created. We use this ability to specify a linearly growing
polymer started by a seed, that can also shrink removing the last associated monomer,
and for which there is no fixed maximal length. In order to produce an unbounded number
of monomers we consider a factory species able to continuosly produce monomers:

Fact = τ ; (Mf |Fact)
S = &?c;S′

S′ = %?c;S
Mf = &!c;M l

M l = %!c;Mf ⊕&?c;M b

M b = %?c;M l

It is easy to see that each seed molecule of species S has the ability to start the creation
of a polymer that can grow and shrink along one direction without any fixed bound to
its maximal length. We will exploit this technique in the proof of Turing completeness of
the biochemical ground form in order to model registers, i.e., data structures on which
increment, decrement and test for zero operations can be executed. The intuition is that
increments are modeled by means of the creation and association of a new monomer,
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decrements by means of the elimination of the last associated monomer, and test for zero
simply by checking the availability of a molecule of species S (the seed becomes of species
S′ when associated to a monomer).

Almost all new ingredients of the BGF have been presented in the examples above.
The unique additional aspect that requires discussion deals with molecule splitting, that
is the possibility for one reactant to produce more than one molecule. Differently from a
previous presentation of the process algebra (Cardelli and Zavattaro 2008), we admit the
splitting of molecules even when they are associated with other molecules. To this aim
we need to extend the language to allow for the specification of the distribution of the
associations among the produced molecules. This is obtained by attaching association
markers to the produced molecules. These specify which associations in the association
history of the splitting molecule are inherited by each newly produced molecule.

Example 6 (Breaking polymer). To illustrate association in combination with molecule
splitting, we describe a linearly growing polymer similar to the actin-like polymer of the
Example 4 in which each monomer, once bound on both sides, is free to split into two
new monomers each one inheriting one of the two bonds. The definition is as follows:

Mf = &!c;M l ⊕&?c;Mr

M l = %!c;Mf ⊕&?c;M b

Mr = %?c;Mf

M b = %!c;Mr ⊕ τ ; (M l
!c|Mr

?c)

It is worth observing that in case of splitting of the molecules of species M b, it is necessary
to indicate also how to split the associations among the two produced molecules of species
M l and Mr, respectively. This is obtained by adding the association marker !c to M l

and ?c to Mr corresponding to the bonds to be split.

M f!

&!c
!

M l!

M r!

M b!

%!c
!

%!c
!

&?c
!

%?c
!

&?c
!

?c
!

!c
!

"
!

Fig. 2. Graphical representation of the breaking polymer.

In this last example we also introduce a graphical notation that allows us to depict the
behavior of the species using an automata like representation. The idea is to represent
each species with a state of the automaton. A transition from the species X to the species
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Y labeled with the action π means that the definition of X includes the summand π;Y .
In case the species X can split, i.e. there is a summand π; (Y 1

h1
| · · · |Y nhn

) with n > 1 in its
definition, we consider a transition labeled with π from the state X to an intermediary
state represented by a bar, and one transition for each Y ihi

with the bar as source, the
state Y i as target, and hi as label. The graphical representation of the breaking polymer
is in Figure 2.

We are now ready to present the definition of the syntax of BGF.

Definition 1 (Biochemical Ground Form (BGF)). Consider the following denu-
merable sets: Species ranged over by X, Y , X1, X2, · · ·, Channels ranged over by a, b,
· · ·, and the totally ordered set of Associations ranged over by k, k′, · · ·.
The syntax of BGF is as follows:

E ::= 0 | X=M,E Reagents
M ::= 0 | π;P ⊕M Molecule
π ::= τ | ?a | !a Internal, Input, Output prefix

| &?a | &!a Association prefixes
| %?a | %!a Dissociation prefixes

P ::= 0 | Xh|P Product
h ::= 0 | ?a :: h | !a :: h Association markers
S ::= 0 | XH |S Solution
H ::= 0 | 〈?a, k〉 :: H | 〈!a, k〉 :: H Association history

BGF ::= (E,S) Biochemical Ground Form

Given a BGF (E,S), we assume that all variables occurring in S occur also in E. More-
over, for every variable X occurring in E, there is exactly one definition X = M in
E.

In the following, trailing 0 are usually omitted: for instance, we denote 〈?a, k〉 :: 0
simply with 〈?a, k〉. Moreover, we consider | and :: also as associative and commutative
operators over the syntax: for instance, ifH andH ′ are 0-terminated association histories,
according to the syntax above, then H :: H ′ means appending the two lists into a single
0-terminated list. Therefore, 0 :: H, H :: 0, and H are syntactically equal. Finally, by
commutativity of ::, we also consider H :: H ′ and H ′ :: H syntactically equal. The same
holds also for |, that is, given the species X and Y , the solutions XH |YH′ |0, YH′ |XH |0,
XH |YH′ , and YH′ |XH are syntactically equal.

Every BGF (E,S) must satisfy the following two constraints:

1 given a molecule XH in S, each symbol ?a or !a occurs in H at most once;
2 given 〈?a, k〉 (resp. 〈!a, k〉) occurring in the association history H of one molecule

XH in S, there exists exactly another one occurrence of k in S, which appears in a
complementary 〈!a, k〉 (resp. 〈?a, k〉) stored in the association history H ′ of a distinct
molecule X ′H′ ;

3 if a molecule XH occurs in S, and in the definition of X in E there is a summand
π; (X1

h1
| · · · |Xn

hn
), the association markers h1, · · · , hn should contain, without repeti-

tion, at least all the symbols ?a and !a occurring in H.
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The first and the second constraints guarantee that one surface of one molecule, denoted
with ?a (resp. !a), is either not associated or associated to exactly another one comple-
mentary surface !a (resp. ?a) of a distinct molecule.‡ The third constraint, on the other
hand, guarantees that the association markers that are attached to the molecules in a
product, correctly specify the redistribution of the associations from the reactants to the
products.

In order to guarantee that all the solutions in the process algebra actually satisfy the
above constraints, we restrict only to well formed BGF. By definition, a well formed BGF
(E,S) satisfies the three constraints. Moreover, we will prove (see Proposition 2) that
well formedness is preserved by the transitions in the transition graph of a BGF. Thus,
given a solution T reachable from a well formed BGF (E,S), we have that also (E, T ) is
well formed, thus it satisfies the three constraints.

Before presenting the definition of well formed BGF, it is necessary to observe that,
as the BGF is Turing complete (the proof is in Section 3), it is in general impossible
to compute the exact set of associations of the molecules belonging to a given species.
This information is necessary in order to check the third constraint according to which,
when a molecule splits, the association markers should consider all the associations of the
splitting molecule. In the light of this impossibility result, in the definition of well formed
BGF, we consider for each species X an over-approximation of the set of its possible
associations, that we denote with Γ(X).

Definition 2 (Well formed BGF). Given the association history H (resp. the asso-
ciation marker h) we denote with set(H) (resp. set(h)) the set of symbols ?a and !a
occurring in H (resp. h).

Let us consider a biochemical ground form (E,S). We say that a function Γ, mapping
each species X occurring in E to symbols in {?a, !a | a occurs in E or S} is an association
over-approximation for (E,S), written Γ ` (E,S), if it is possible to derive Γ ` (E,S) in
the following proof system:

— Γ ` (0,0)
— if Γ ` (0, S) and set(H) ⊆ Γ(X) then

Γ ` (0, S|XH)

— if Γ ` (E,S) and X is not already defined in E then

Γ ` (X=0,E , S)

— if Γ ` (X=M,E , S), σ ∈ {?a, !a | a ∈ Channels}∪{τ}, Γ(X) ⊆ Γ(X1)∪ · · · ∪Γ(Xn)
and set(hi) ∩ Γ(X) ⊆ Γ(Xi) for each 0 ≤ i ≤ n then

Γ ` (X=σ; (X1
h1
| · · · |Xn

hn
)⊕M,E , S)

— if Γ ` (X=M,E , S), σ ∈ {?a, !a | a ∈ Channels}, Γ(X)∪{σ} ⊆ Γ(X1)∪ · · ·∪Γ(Xn)

‡ In BGF, we do not admit self-complexation, i.e., the possibility for one molecule to associate with

itself.
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and set(hi) ∩ (Γ(X) ∪ {σ}) ⊆ Γ(Xi) for each 0 ≤ i ≤ n then

Γ ` (X=&σ; (X1
h1
| · · · |Xn

hn
)⊕M,E , S)

— if Γ ` (X=M,E , S), σ ∈ {?a, !a | a ∈ Channels}, Γ(X) \ {σ} ⊆ Γ(X1)∪ · · · ∪Γ(Xn)
and set(hi) ∩ (Γ(X) \ {σ}) ⊆ Γ(Xi) or each 0 ≤ i ≤ n then

Γ ` (X=%σ; (X1
h1
| · · · |Xn

hn
)⊕M,E , S)

A BGF (E,S) is well formed if

— given XH in S, each symbol ?a or !a occurs in H at most once and
— an association k either does not occur in S or it occurs in exactly two pairs 〈?a, k〉

and 〈!a, k〉 stored in the association history of two distinct molecules and
— there exists an association over-approximation Γ such that Γ ` (E,S) and for each

species X in E the following holds:

– if X = · · · ⊕ π; (X1
h1
| · · · |Xn

hn
) ⊕ · · · with n > 1 then set(hi) ∩ set(hj) = ∅ for

each 1 ≤ i < j ≤ n and Γ(X) ⊆ set(h1)∪ · · · ∪ set(hn), moreover if π = &σ with
σ =?a or σ =!a then also σ ∈ set(h1) ∪ · · · ∪ set(hn);

– if X = · · · ⊕ π; 0⊕ · · · then Γ(X) = ∅ and π 6= &σ for any σ =?a or σ =!a.

It is worth observing that the existence of an association over-approximation Γ satisfy-
ing the property reported in the last item of the definition is decidable. In fact, there exist
only a finite number of such functions to be checked. This holds because the association
over-approximations to be considered are defined on a finite domain (the set of species
X occurring in E) and a finite range (the set of symbols ?a and !a occurring in E or S).

The operational semantics of a BGF is defined in terms of a Transition Graph (TG),
that is a binary relation on solutions denoted with S → T .

Definition 3 (Semantics of a Biochemical Ground Form). Given the product
P = X1

h1
| · · · |Xn

hn
with n > 1 and the association history H, with P↓H we denote the

solution X1
H↓h1

| · · · |Xn
H↓hn

where H↓h is the projection of the association history H to
the associations with a marker in h. On the other hand, if P = Xh then P ↓H is XH

while if P = 0 then P↓H is 0. With H \ 〈?a, k〉 (resp. H \ 〈!a, k〉) we denote the history
achieved by removing from H the association 〈?a, k〉 (resp, 〈!a, k〉).

Given the BGF (E,S), we define Next(E,S) as the set containing the following kinds
of transitions:

Unary: if S = XH |S′ and X = · · · ⊕ τ ;P ⊕ · · · in E then

XH | S′ → P↓H | S′

Binary: if S = XH |X ′H′ |S′ and X = · · · ⊕?a;P ⊕ · · · and X ′ = · · · ⊕!a;P ′ ⊕ · · · in E

then

XH | X ′H′ | S′ → P↓H | P ′↓H ′ | S′

Association: if S = XH |X ′H′ |S′, X = · · · ⊕&?a;P ⊕ · · · and X ′ = · · · ⊕&!a;P ′ ⊕ · · · in
E, ?a and !a do not appear in the association histories H and H ′ respectively, and
k is the smallest association key among those that do not appear in the association
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histories in S then

XH | X ′H′ | S′ → P↓(H::〈?a, k〉) | P ′↓(H ′::〈!a, k〉) | S′

Dissociation: if S = XH |X ′H′ |S′, X = · · ·⊕%?a;P ⊕· · · and X ′ = · · ·⊕%!a;P ′⊕· · · in
E, and 〈?a, k〉 and 〈!a, k〉 appear in the association histories H and H ′ respectively,
then

XH | X ′H′ | S′ → P↓(H \ 〈?a, k〉) | P ′↓(H ′ \ 〈!a, k〉) | S′

The Transition Graph of (E,S) is defined as follows:

TG(E,S) =
⋃
n Ψn

where Ψ0 = Next(E,S) and Ψn+1 =
⋃
{Next(E,Q) | Q is a solution of Ψn}

In order to prove that all the solutions T reachable from a well formed BGF (E,S) are
well formed according to the definitions in E (i.e. (E, T ) is well formed) we first need to
show that any association over-approximation for S is valid also for T .

Proposition 1. Let (E,S) be a well formed BGF. If Γ ` (E,S) and S → T is a
transition in Next(E,S), then also Γ ` (E, T ).

Proof. The proof tree of Γ ` (E,S) according to the proof system in the Definition 2 is
divided in two parts: the first part proves that Γ ` (0, S) (and checks that set(H) ⊆ Γ(X)
for each XH in S), while the second part deals with the definitions in E (and can be
used to prove that Γ ` (E,W ) for any solution W such that Γ ` (0,W )). Assuming that
S → T is in Next(E,S), we show the existence of a proof tree also for Γ ` (E, T ).

The first part of this proof tree, proving that Γ ` (0, T ), checks that set(H) ⊆ Γ(X)
for each molecule XH occurring in T . For the molecules already in S this condition was
already checked (by the proof tree of Γ ` (0, S)). For the molecules produced by the
transition S → T we proceed by case analysis considering the four possible kinds of
transition. We detail only the analysis for the unary case, as the other cases are treated
similarly.

Assume that S → T is a unary transition that modifies the molecule XH according to
a summand τ ; (X1

h1
| · · · |Xn

hn
) in the definition of X. In this case the new molecules are

X1
H↓h1

| · · · |Xn
H↓hn

. For each of these molecules Xi
Hi

(where Hi = H ↓hi) we have that
set(Hi) = set(H) ∩ set(hi), thus we must prove that set(H) ∩ set(hi) ⊆ Γ(Xi). As
observed above, we have that set(H) ⊆ Γ(X), thus also set(H) ∩ set(hi) ⊆ Γ(X) ∩
set(hi). Due to the summand τ ; (X1

h1
| · · · |Xn

hn
) in the definition of X in E, and because

Γ ` (E,S), we have that the fourth rule of the proof system in Definition 2 guarantees
that Γ(X) ∩ set(hi) ⊆ Γ(Xi). This concludes the analysis of this case.

We have shown that Γ ` (0, T ). As discussed above, the second part of the proof tree
of Γ ` (E,S) can be used to prove that also Γ ` (E, T ).

We can now show that, given a well formed BGF (E,S) and a transition S → T in
Next(E,S), then also (E, T ) is well formed.

Proposition 2. Let (E,S) be a well formed BGF. If S → T is a transition inNext(E,S),
then also (E, T ) is a well formed BGF.
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Proof. Consider a well formed BGF (E,S) and a transition S → T in Next(E,S). In
order to prove that also the BGF (E, T ) is well formed, we need to show that the three
conditions in the Definition 2 are satisfied by (E, T ).

As far as the first two conditions are concerned, a trivial case analysis on the possible
kinds of the transition S → T allows us to conclude that, as S satisfies these conditions,
the same holds also for T . In particular, the first condition (i.e. no symbol ?a or !a
appears twice in the same association history) holds as a consequence of the condition
“?a and !a do not appear in the association histories H and H ′ respectively” considered
for association transitions. On the other hand, the second condition (i.e. an association
key occurs exactly in two complementary associations of two distinct molecules) holds
as a consequence of the freshness of k in association transitions, by the fact that a new
instance of keys is always located in complementary associations, and by the fact that
already available instances of keys are always removed in pairs by dissociation transitions.

We now consider the third condition. This condition checks the existence of an associ-
ation over-approximation which has a precise relationship with the definitions in E. As
(E,S) is well formed, the existence of at least one of such association over-approximation
is guaranteed. Let Γ be such association over-approximation such that Γ ` (E,S). By
Proposition 1 we have that also Γ ` (E, T ), thus we can conclude that also the third
condition is satisfied by (E, T ).

As a trivial corollary we have that, given a well formed BGF (E,S) and any reachable
solution T in TG(E,S), then also (E, T ) is well formed.

Corollary 1. Let (E,S) be a well formed BGF. If T is a solution in TG(E,S), then
also (E, T ) is a well formed BGF.

Proof. Assume that T is a solution in TG(E,S) where (E,S) is a well-formed BGF.
By definition of transition graph we have that if there exists a natural number i such
that T can be reached after i transitions starting from the initial solution S. The thesis
is proved applying i times the Proposition 2.

3. Turing completeness of BGF

We prove that the Biochemical Ground Form is Turing complete. In the literature, several
notions of Turing completeness for process algebras can be found, see e.g. (Maffeis and
Phillips 2005) for a classification of these criteria. We now report three (variants) of the
criteria presented in (Maffeis and Phillips 2005). These criteria are based on the three
following basic concepts:

— Computation: a computation of a process is a maximal sequence of reduction steps,
that is an infinite sequence of reductions, or a finite sequence of reductions leading
to a state with no outgoing reductions;

— Computation that signal completion: a computation signals completion if it
passes through a state that contains a given subprocess representing the completion
signal.
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For instance, in BGF, we could assume that the completion signal is represented by the
presence of one molecule of a given species.

We are now ready to present the first criterion for Turing completeness.
Criterion 1: Given a partial recursive function with a given input there is a correspond-
ing process in the process algebra such that:

— if the function is defined then all computations are finite and signal completion;
— if the function is not defined then all computations are infinite and do not signal

completion.

The above criterion can be relaxed by requiring that at least one computation is correct
(instead of all computations) and considering only one aspect between finiteness of the
computation or generation of the completion signal. In this way, we can obtain these two
weaker criteria.
Criterion 2: Given a partial recursive function with a given input there is a correspond-
ing process in the process algebra such that:

— if the function is defined then at least one computation is finite;
— if the function is not defined then all computations are infinite.

Criterion 3: Given a partial recursive function with a given input there is a correspond-
ing process in the process algebra such that:

— if the function is defined then at least one computation signals completion;
— if the function is not defined then all computations do not signal completion.

Trivially, we have that Criterion 1 implies both Criteria 2 and 3, i.e. if a process algebra
is Turing complete according to the former it is Turing complete also according to the
latters. No other direct implications among these criteria exist. For instance, in (Busi
et al. 2009) it is proved that CCS (Milner 1989) with replication instead of recursion is
Turing complete according to Criterion 2 but not according to Criteria 1 or 3.

In this section we prove that BGF is Turing complete according to Criterion 1. On
the other hand, when we prove that fragments of BGF are not Turing universal (see
Sections 5 and 6) we show that they cannot be Turing complete not only according to
the same criterion, but also according to any of the weaker criteria. This strengthens the
expressiveness gap that we prove.

In order to prove that BGF is Turing complete, we show how to model Random Access
Machines (RAMs) (Minsky 1967), a well known Turing powerful formalism based on
registers containing nonnegative natural numbers. The registers are used by a program,
that is a set of indexed instructions Ii of two possible kinds:

— i : Inc(rj) that increments the register rj and then moves to the execution of the
instruction with index i+ 1 and

— i : DecJump(rj , s) that attempts to decrement the register rj ; if the register does not
hold 0 then the register is actually decremented and the next instruction is the one
with index i+ 1, otherwise the next instruction is the one with index s.

We assume the existence of a special instruction Ihalt corresponding to program termi-
nation.
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In our encoding of RAMs, we use a simplified notation for BGF definitions in which ac-
tions can be written in sequence. For instance the definition A = π1;π2;C is a shorthand
for the two definitions A = π1;B and B = π2;C.

The encoding considers one species Ii for each instruction Ii. The behavior of the
molecules of species Ii is to update the registers according to the corresponding instruc-
tion Ii, and then produce one molecule of species Ij corresponding to the subsequent
instruction to be executed.

Formally, the species corresponding to the instructions are defined as follows:

Ii =


!incj ; ?ack; Ii+1 if Ii = i : Inc(rj)
!decj ; ?ack; Ii+1 ⊕ !zeroj ; Is if Ii = i : DecJump(rj , s)
0 if Ii = Ihalt

In Figure 3 we graphically depict the above definitions using the notation introduced
in the Example 6. In case of an increment instruction, a request for increment incj is

  Instruction 

i: Inc( rj ) 

        Instruction 

i: DecJump( rj , s ) 

Ii 

!incj 

Ii+1 

?ackj 

Ii 

!decj 

Ii+1 

?ackj 

Is 

!zeroj 

Fig. 3. Encoding of RAM instructions.

considered, then an acknowledgment is required to have confirmation that the increment
actually took place, and finally the next instruction is activated. In case of a decrement,
either a decrement or a test for emptiness can take place: in the first case an acknowl-
edgment is required before activating the next instruction; in the second case the jump
is executed. In case of the terminating instruction, the corresponding molecule simply
does nothing.

Each register rj is modeled by a polymer similar to those described in the Example 5.
In this case the seed is of species Zj and the monomers are of species Rj . The number of
monomers in the polymer coincides with the register content, namely, when the register
holds the number l the polymer is composed of exactly l monomers. As it is not possible
to know a priori the number of monomers necessary during the computation, we consider
a factory, that is, a molecule of species RF j which is responsible for the the generation
of the molecules of species Rj whenever they are needed. The last associated molecule
in the polymer is the only one able to interact with the instruction molecules: if it is of
species Zj the active action is ?zeroj , if it is of species Rj the active action is ?decj . The
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effect of the execution of ?decj is the dissociation of the last associated molecule from
the polymer.

The formal definition of the species used to model registers is as follows:

Zj = ?zeroj ;Zj ⊕ &?linkj ; %?linkj ;Zj

RF j = ?incj ;
(
RF j |(&!linkj ; !ack;Rj)

)
Rj = (&?linkj ;R′j) ⊕ (?decj ; %!linkj ; !ack; 0)
R′j = %?linkj ;Rj

In Figure 4 we graphically depict the encoding of registers.

rj  with content n 

Zj R’j R’j Rj R’j 

n  instances of Rj 

Zj 

?zeroj 

&?lj 

%?lj 

?incj 

Rj 

!ackj 

&!lj 

&?lj 

%?lj ?decj %!lj !ack 

RFj 

R’j 

Fig. 4. Encoding of RAM registers.

The remainder of this section is devoted to the formal proof of correctness of this
RAM encoding. We use the following notation. Given a RAM with registers r1, · · · , rn,
we denote with (Ii, r1 = l1, · · · , rn = ln) 7→ (Ij , r1 = l′1, · · · , rn = l′n) its possible steps
of computation. Namely, if the RAM is going to execute instruction Ii, and the register
contents are l1, · · · , ln, respectively, then the next instruction is Ij and the new register
contents are l′1, · · · , l′n, respectively.

In the following we need to treat as equivalent some syntactically different solutions
which represent the same biological system. For instance, the two solutions

Z1
〈?link1,1〉 | R

′1
〈?link1,4〉::〈!link1,1〉 | R

1
〈!link1,4〉

Z1
〈?link1,2〉 | R

′1
〈?link1,3〉::〈!link1,2〉 | R

1
〈!link1,3〉

both denote the polymer representing the register r1 with content 2, even if they differ
in their association keys. Formally, we have that two solutions S and T are equivalent if
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there exists an injective renaming ρ for the association keys in S such that (S[ρ]) = T ,
where S[ρ] denotes the result of the application of the injective renaming to the solution
S. In the example above, the injective renaming used to prove that the two solutions are
equivalent is {1 7→ 2, 4 7→ 3}.

We denote with [[(Ii, r1 = l1, · · · , rm = lm)]] the set of equivalent solutions which rep-
resent the RAM ready to execute the instruction Ii and in which the registers r1, · · · , rm
have contents l1, · · · , lm, respectively. Formally, [[(Ii, r1 = l1, · · · , rm = lm)]] is the set of
solutions equivalent to:

Ii | RF 1 | · · · | RFn |
Z1
〈?link1,k1

1〉
| R′1〈?link1,k2

1〉::〈!link1,k
1
1〉
| · · · | R′1

〈?link1,k
l1
1 〉::〈!link1,k

l1−1
1 〉

| R1

〈!link1,k
l1
1 〉
|

· · ·
Zm〈?linkm,k1

m〉
| R′m〈?linkm,k2

m〉::〈!linkm,k1
m〉
| · · · | R′m

〈?linkm,k
lm
m 〉::〈!linkm,k

lm−1
m 〉

| Rm
〈!linkm,k

lm
m 〉

Given a RAM denoted with R, having instructions I1, · · · , In and registers r1, · · · , rm,
we use ER to denote the definitions of the species I1, · · ·, In, Z1, · · ·, Zm, RF 1, · · ·,
RFm, R1, · · ·, Rm, and R′1, · · ·, R′m as defined above. Thus, given one of the possible
configurations (Ii, r1 = l1, · · · , rm = lm) of R, we model it with the BGF (ER, S) where
S is any of the solutions in [[(Ii, r1 = l1, · · · , rm = lm)]].

We are now ready to prove the correctness result.

Theorem 1. Let R be a RAM. Given one of its possible configurations (Ii, r1 =
l1, · · · , rm = lm) and a solution S0 ∈ [[(Ii, r1 = l1, · · · , rm = lm)]], we have that:

— either Ii = Ihalt and Next(ER, S0) is empty;
— or (Ii, r1 = l1, · · · , rm = lm) 7→ (Ij , r1 = l′1, · · · , rm = l′m) and there exist S1, · · · , Sz

such that for every 0 ≤ x < z we have that Next(ER, Sx) contains only one transition
which has Sx+1 as its target solution, and moreover Sz ∈ [[(Ij , r1 = l′1, · · · , rm = l′m)]].

Proof. The proof is by case analysis on the following four possible cases: Ii = Ihalt,
Ii = i : Inc(rj), Ii = i : DecJump(rj , s) with lj > 0, and Ii = i : DecJump(rj , s) with
lj = 0.

In case Ii = Ihalt case we have that the molecules in S0 can perform the following
actions: ?zeroj , &?linkj , incj , and ?decj . As there are no complementary actions, or
internal τ actions, no transition is admitted thus Next(ER, S0) is empty.

Assume that Ii = i : Inc(rj). In this case (Ii, r1 = l1, · · · , rm = lm) 7→ (Ii+1, r1 =
l1, · · · , rj = lm + 1, · · · , rm = lm). Consider now S0 ∈ [[(Ii, r1 = l1, · · · , rm = lm)]]. We
have that S0 has only one possible transition following from a synchronization on channel
incj . The reached solution, can perform only one transition, that is an association on
the surface linkj . This last reached solution has only one transition following from a
synchronization on the channel ack. The reached solution is in [[(Ii+1, r1 = l1, · · · , rj =
lm + 1, · · · , rm = lm)]].

The remaining two cases are treated similarly.

As a corollary of this Theorem we have that BGF is Turing complete according to
Criterion 1.
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Corollary 2. The process algebra BGF is Turing complete according to Criterion 1.

Proof. As the RAM computational model is Turing universal, we have that given any
partial recursive function with a given input, we can consider a corresponding RAM R
with an initial configuration (Ii, r1 = l1, · · · , rm = lm) that contains the input in one of
its registers.

Assume that the function is defined for the given input. We have that the RAM R
with initial configuration (Ii, r1 = l1, · · · , rm = lm) terminates its computation. Assume
that the computation has length i. Applying i-times Theorem 1 we can prove that the
computation of the encoding [[(Ii, r1 = l1, · · · , rm = lm)]] in BGF proceeds deterministi-
cally, terminates its computation, and produces the molecule Ihalt that we can consider
as the signal of completion.

Assume now that the function is not defined for the given input. In this case the RAM
R with initial configuration (Ii, r1 = l1, · · · , rm = lm) does not terminate its computation.
By contraposition, we can prove that also the encoding [[(Ii, r1 = l1, · · · , rm = lm)]] in
BGF does not terminate and does not produce the molecule Ihalt. In fact, if [[(Ii, r1 =
l1, · · · , rm = lm)]] could terminate or produce the molecule Ihalt, we can apply Theorem 1
to prove that also the RAM R with initial configuration (Ii, r1 = l1, · · · , rm = lm) should
terminate.

We complete the section discussing the expressiveness gap between BGF and CGF
(that corresponds to BGF without the association and dissociation primitives). The com-
putational strength of CGF has been studied in (Zavattaro and Cardelli 2008). In partic-
ular, it is shown that in CGF with a nondeterministic semantics (as the one considered in
this paper) properties such as universal termination (all computations terminate), exis-
tential termination (existence of a terminating computation), and coverability (existence
of a computation leading to a solution containing at least some given molecules) are de-
cidable. As a consequence of these results we have that CGF cannot be Turing complete
according to any of the three criteria described above. On the contrary, in Corollary 2 we
have shown that BGF is Turing complete according to the strongest of the three criteria.
In the next three sections we try to shed light on this expressiveness gap between BGF
and CGF looking for minimal sets of primitives that make BGF Turing complete. The
final result is that all primitives but association and dissociation can be removed from
BGF without reducing its computational strength.

4. Turing completeness of BGF with only association and dissociation

In this Section we consider the fragment of BGF obtained by removing the internal, input,
and output prefixes. We refer to this fragment with BGF−τ?!. This simple process alge-
bra, including only association and dissociation actions, is already Turing complete. We
prove this result simply observing that the encoding of RAMs presented in the previous
section does not contain internal τ actions, and moreover it can be rewritten replacing
all input/output actions with an association action followed by the corresponding dis-
sociation. For instance, given two interacting species X =?a; 0 and Y =!a; 0, we can
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consider the alternative definitions X = &?a; %?a; 0 and Y = &!a; %!a; 0 in which we
use association and dissociation actions instead of input and output.

We now rephrase the previous encoding following this idea. The species corresponding
to the instructions are redefined as follows:

Ii =


&!incj ; %!incj ; &?ack; %?ack; Ii+1 if Ii = i : Inc(rj)

&!decj ; %!decj ; &?ack; %?ack; Ii+1 ⊕
&!zeroj ; %!zeroj ; Is

if Ii = i : DecJump(rj , s)

0 if Ii = Ihalt

The new definition of the species used to model registers is as follows:

Zj = &?zeroj ; %?zeroj ;Zj ⊕ &?linkj ; %?linkj ;Zj

RF j = &?incj ; %?incj ;
(
RF j |(&!linkj ; &!ack; %!ack;Rj)

)
Rj = (&?linkj ;R′j) ⊕ (&?decj ; %?decj ; %!linkj ; &!ack; %!ack; 0)
R′j = %?linkj ;Rj

Keeping all the other definitions as in the previous section, we have that both Theo-
rem 1 and Corollary 2 hold also for this new encoding of RAM in BGF−τ?!.

5. Non Turing completeness of BGF without association

We now move to the fragment of BGF obtained by removing the association prefixes.
We refer to this fragment with BGF−&. In BGF−& one complex, that is a multiset of
connected molecules, cannot increment its size. This property of BGF−& allows us to
prove that this fragment of BGF is no longer Turing complete, even if we consider the
weaker Criteria 2 and 3 presented in Section 3. As far as Criterion 2 is concerned, we
show that the existence of a terminating computation is decidable in BGF−&. This is
enough to prove that BGF−& cannot be Turing complete according to this criterion: in
fact, it imposes that the encoding of a given partial function for a given input has a
terminating computation if and only if the function is defined on that input. As far as
Criterion 3 is concerned, we show that the reachability of a solution containing at least
one molecule of a given species. Assuming that this is the unique reasonable way to signal
completion in a calculus such as BGF, this is sufficient to prove that BGF−& cannot be
Turing complete neither according to this criterion: in fact, it imposes that the encoding
of a given partial function for a given input signals completion if and only if the function
is defined on that input.

The decidability results follow by reduction to decidable problems in Place/Transition
Petri nets (P/T nets). These nets are an interesting infinite state model for the represen-
tation and analysis of parallel processes because they retain several decidability problems,
such as termination, reachability or coverability (Esparza and Nielsen 1994). We recall
here the basic notation, for a full description of this computational model see (Reisig
1985).

Definition 4. A P/T net is a tuple N = (P, T ,m0), where P is a finite set of places. A
finite multiset over the set P of places is called a marking. If a place P occurs n times
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in a marking m, we say that n tokens are placed in P . m0 is the initial marking. T is
the finite set of transitions, that is a finite relation on markings. Given a pair 〈m′,m′′〉
in T , we call the marking m′ the pre-set and the marking m′′ the post-set. The marking
m of a P/T net can be modified by means of transitions firing: a transition with pre-set
m′ and post-set m′′ can fire if m′ ⊆ m; upon transition firing the new marking of the
net becomes (m \ m′) ] m′′ where \ and ] are the difference and union operators for
multisets, respectively.

In the following we will consider the termination and the coverability problems for P/T
nets. Given a P/T net (P, T ,m0), the termination problem (resp. coverability problem)
consists of checking whether there exists a sequence of markings m0, · · · ,mn such that,
for 0 ≤ i < n, the marking mi can be modified into mi+1 by some transition in T , and no
transitions can fire in mn (resp. a given marking m is contained in mn). Both problems
turn out to be decidable (Esparza and Nielsen 1994) for P/T nets.

The basic idea of the P/T net semantics we present for BGF−&, is to represent the
evolution of complexes in the solution. A complex is a solution composed of molecules
connected by associations. We represent each complex in the solution with a token in a
corresponding place of the P/T net. We will show that given a system (E,S) specified in
BGF−& it is possible to compute an upper-bound to the size of complexes in solutions
in TG(E,S), thus only finitely many different complexes can ge generated in the given
system. This guarantees that the corresponding P/T net is finite.

We first formalize the notion of complex.

Definition 5 (Complex). A complex is a nonempty connected solution, that is a so-
lution X1

H1
| · · · |Xn

Hn
with n ≥ 1 such that given any pair of indexes 1 ≤ i < j ≤ n

there exists a sequence of indexes l1, · · · , lm, with l1 = i and lm = j, such that for any
1 ≤ s < m the association histories Hls and Hls+1 share at least one association key.

As done in the proof of correctness of the RAM encoding in Section 3, we do not
distinguish between two equivalent complexes, that is two complexes S and T for which
there exists an injective renaming ρ for the association keys in S such that (S[ρ]) = T ,
where S[ρ] denotes the result of the application of the injective renaming to the solution
S. We will use [S] to denote the set of complexes equivalent to S.

Before presenting the P/T net semantics for BGF−& we show that it is possible to
compute an upper-bound to the size of the complexes that can be generated in a given
system specified in BGF−&. The first observation follows form the fact that the absence
of association actions guarantees that the number of different association keys in a system
cannot grow. This is formalized in the following proposition.

Proposition 3. Let (E,S) be a specification in BGF−& and let T be a solution in
Next(E,S). We have that the number of different association keys in T is not greater
than the number of different association keys in S.

Proof. The thesis trivially follows from the fact that all transitions in Next(E,S) are
not associations.

As a corollary, we have that given (E,S) in BGF−&, it is not possible to generate in
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TS(E,S) a complex with a size greater than the number of different association keys in
S plus one.

Corollary 3. Let (E,S) be a specification in BGF−& and let T be a solution in TG(E,S).
We have that all complexes in T have size smaller than the number of different association
keys in S plus one.

Proof. The thesis follows from Proposition 3 and by the observation that a complex
of size n contains at least n− 1 different association keys.

We now define the function dec( ) that decomposes a solution in the set of its com-
plexes.

Definition 6 (Decomposition of a solution). Given a solution S, this can be parti-
tioned in the complexes S1, · · · , Sn such that S = S1| · · · |Sn. The decomposition of S is
formally defined as the multiset dec(S) = {{[S1], · · · , [Sn]}}.

We are now ready to define the P/T net semantics for BGF−&.

Definition 7. Consider a system (E,S) specified in BGF−&. The P/T net of (E,S),
denoted with PT−&(E,S), is the tuple (P, T ,m0) where:

— P is the following set of (equivalence classes of) complexes

{[V ] | V is a complex of size smaller than the number of different association
keys in S plus one and s.t. all species and symbols ?a and !a occurring
in V are also in E or S}

— T is the following set of transitions (i.e. pairs of markings)

{〈[V ], dec(T )〉 | V ∈ P and V → T ∈ Next(E, V )} ∪
{〈{{[V1], [V2]}}, dec(T )〉 | V1, V2 ∈ P and V1|V2 → T ∈ Next(E, V1|V2)}

— mo = dec(S)

It is worth to observe that, given (E,S) of BGF−&, then PT−&(E,S) is a well defined
P/T net. In fact, we have that the set of places P is finite. This follows from the upper-
bound to the size of the complexes in P, and the fact that these complexes are composed
of molecules belonging to a finite amount of species and with associations on a finite set
of symbols ?a and !a. The finiteness of P guarantees that also the set of transitions T is
finite.

We now prove the correctness of the P/T net semantics.

Theorem 2. Consider a system (E,S) specified in BGF−&. We have that the following
hold:

— if T1 → T2 is in TG(E,S) then there exists a transition in PT−&(E,S) that modifies
the marking dec(T1) into dec(T2);

— if dec(T1) is modified into the marking m by some transition in PT−&(E,S) and T1

is a solution in TG(E,S), then there exists a solution T2 such that dec(T2) = m and
T1 → T2 is in TG(E,S).
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Proof. Assume that T1 → T2 is in TG(E,S). Let dec(T1) = {{V1, V2, · · · , Vn}}. The
transition T1 → T2 follows from the execution of actions performed by (one or two)
molecules belonging to either one or two complexes. We consider only the first case,
as the second one is treated similarly. It is not restrictive to assume that the complex
containing the molecule(s) performing the action(s) is V1. In this case we have that
T2 = V ′1 |V2| · · · |Vn. The complex V1 can perform the same transition also in isolation,
that is, there exists a solution V ′′1 equivalent to V ′1 such that V1 → V ′′1 is in Next(E, V1).
Notice that we had to consider a different solution V ′′1 as target for this transition. In
fact, if the transition is an association, it could be the case that the fresh key (that is
the smallest among the unused association keys) adopted for the solution V1 is different
from the one adopted for T1 = V1|V2| · · · |Vn. Nevertheless, as V ′1 and V ′′1 are equivalent,
we have that dec(V ′1) = dec(V ′′1 ). We complete this first part of the proof observing
that by definition of T , the transition V1 → V ′′1 in Next(E, V1) ensures the presence of
a transition 〈[V ], dec(V ′′1 )〉 that can modify the marking dec(T1) = {{V1, V2, · · · , Vn}} to
the marking dec(V ′′1 ) ] {{V2, · · · , Vn}} = dec(T2).

Assume now that T1 is a solution in TG(E,S) such that dec(T1) is modified in the
marking m by some transition in T . By definition of T , this transition can be of two
kinds, either 〈[V ], dec(T )〉 or 〈{{[V1], [V2]}}, dec(T )〉. We consider only the first case, as
the second one is treated similarly. We have that dec(T1) = {{[V ]}} ] dec(T ′1) (assuming
T1 = V |T ′1), m = dec(T ) ] dec(T ′1), and that V → T is in Next(E, V ). The same kind
of transition can be performed also in the (greater) solution T1, namely, as V → T is in
Next(E, V ) then there exists a solution T ′ equivalent to T such that V |T ′1 → T ′|T ′1 is in
TG(E,S) (as discussed above, we need to consider a solution T ′ equivalent to T as in
case the transition is an association two different association keys could be adopted in
the solutions V and V |T ′1). We conclude the proof observing that the thesis holds if we
take T2 = T ′|T ′1. In fact, as T ′ is equivalent to T , then dec(T2) = dec(T ′) ] dec(T ′1) =
dec(T ) ] dec(T ′1) = m.

We conclude this section showing that the existence of a terminating computation and
the existence of a computation leading to a solution containing at least one molecule of
a given species are both decidable properties for BGF−&.

Corollary 4. Given (E,S) of BGF−&, we have that there exists a terminating compu-
tation in TG(E,S) (i.e. a sequence of solutions S0, · · · , Sn such that S0 = S, Si → Si+1 ∈
TG(E,S) for 0 ≤ i < n, and Next(E,Sn) is empty) if and only if there is a terminating
computation in PT−&(E,S).

Proof. If there is a terminating computation in TG(E,S) (resp. in PT−&(E,S)) then,
by Theorem 2, we have that there is also a terminating computation in PT−&(E,S)
(resp. in TG(E,S)).

As the existence of a terminating computation is decidable in P/T nets we have that
the same holds also in BGF−&. Thus we can conclude that BGF−& cannot be Turing
complete according to the Criterion 2.

Corollary 5. Given (E,S) of BGF−&, we have that there exists a computation leading
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to a solution T that contains at least one molecule of a given species X, if and only if
there is a computation in PT−&(E,S) leading to a marking with a token in a place [V ]
such that at least one molecule of species X belongs to V .

Proof. If there is a computation in TG(E,S) leading to a solution T that contains
at least one molecule of a given species X, by Theorem 2 there exists a computation in
PT−&(E,S) leading to a marking m such that dec(T ) = m. Hence, m has at least one
token in a place [V ] such that V contains one molecule of species X.

On the other hand, if PT−&(E,S) has a computation leading to a marking m with
at least one token in a place [V ] such that V contains one molecule of species X, by
Theorem 2 there exists a computation in TG(E,S) leading to a solution T such that
dec(T ) = m. Hence, T contains at least one molecule of species X.

As the existence of a computation leading to a marking containing at least one token
in a given place is a particular case of the coverability problem which is decidable for P/T
nets, we have that the possibility to generate a molecule of a given species is decidable
also in BGF−&. Thus we can conclude that BGF−& cannot be Turing complete neither
according to the Criterion 3.

6. Non Turing completeness of BGF without dissociation

We now complete our analysis of the fragments of BGF showing that also the fragment
obtained by removing the dissociation actions is no longer Turing complete. We refer
to this fragment with BGF−%. Also for BGF−%, as done in the previous Section for
BGF−&, we prove the decidability of termination (thus BGF−% cannot be Turing com-
plete according to the Criterion 2) and of the existence of a computation in which at least
one molecule of a given species is produced (thus BGF−% cannot be Turing complete
according to the Criterion 3).

Before discussing the decidability results we observe that, even if there is no dissoci-
ation actions, in BGF−% complexes can reduce their size. This is a consequence of the
possibility for complexed molecules to split and distribute their associations among the
produced molecules. Consider, for instance, a polymer of length n. If the monomer at the
intermediary position i splits in two molecules (as, e.g., discussed in the Example 6), and
passes its two associations to the two produced molecules, the initial polymer of length
n generates one polymer of length i and one of length n− i+ 1.

The decidability results are proved also in this section by reduction to the termination
and coverability problems for P/T nets. Nevertheless, the proof technique presented in
the previous section does not apply to BGF−% because in this fragment there exists,
in general, no upper-bound to the size of the complexes that can be generated from an
initial solution.

The P/T net semantics we present in this section is based on the following idea: each
molecule XH in the solution is represented with a token in a corresponding place Xset(H)

where set(H) is the function defined in Definition 2 that associates to an association
history the set of symbols ?a, !a occurring in it. In this way, the P/T net semantics ab-
stract away from the association keys but, as we will prove, this loss of information is not
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problematic in BGF−% where associations, once created, cannot be used by subsequent
actions.

Before presenting the PT net semantics, we introduce an auxiliary operator nokeys( )
that removes the association keys from the solutions. Given the solution S = X1

H1
| · · · |Xn

Hn

we define nokeys(S) = ]i∈{1,···,n}{{Xi
set(Hi)

}} where ]i∈IMi is the multiset union of the
multisets Mi with index i taken from the set of indexes I.

We are now ready to define the P/T net semantics for BGF−%.

Definition 8. Consider a system (E,S) specified in BGF−%. The P/T net of (E,S),
denoted with PT−%(E,S), is the tuple (P, T ,m0) where:

— P is the following set of species decorated with a set of symbols ?a, !a

{XS | X is a species defined in E and S is a
set of symbols ?a, !a with a occurring in E or S}

— T is the following set of pairs of markings

{〈{{XS}},]i∈{1,···,n}{{Y iSi
}}〉 | XH → Y 1

H1
| · · · |Y nHn

∈ Next(E,XH), XS ∈ P,
S = set(H), and Si = set(Hi) for 1 ≤ i ≤ n} ∪

{〈{{XS , X ′S′}},]i∈{1,···,n}{{Y iSi
}}〉 | XH |X ′H′ → Y 1

H1
| · · · |Y nHn

∈ Next(E,XH |X ′H′),
XS ∈ P, X ′S′ ∈ P,S = set(H),S ′ = set(H ′),
and Si = set(Hi) for 1 ≤ i ≤ n}

— mo = nokeys(S)

It is easy to see that PT−%(E,S) is a finite P/T net. In fact, the places XS can be
defined considering a finite set of species and a finite set of symbols ?a, !a.

We now formalize the correspondence between the semantics of a system (E,S) spec-
ified in BGF−% and the corresponding P/T net semantics.

Theorem 3. Consider a system (E,S) specified in BGF−%. We have that the following
hold:

— if T1 → T2 is in TG(E,S) then there exists a transition in PT−%(E,S) that modifies
the marking nokeys(T1) into nokeys(T2);

— if nokeys(T1) is modified to the marking m by some transition in PT−%(E,S) and T1

is a solution in TG(E,S), then there exists a solution T2 such that nokeys(T2) = m

and T1 → T2 is in TG(E,S).

Proof. Assume that T1 → T2 is in TG(E,S). Let T1 = X1
H1
| · · · |Xn

Hn
. The transition

T1 → T2 follows from the execution of actions performed by (one or two) molecules in T1.
We consider only the first case, as the second one is treated similarly. It is not restrictive to
assume that the molecule performing the action is X1

H1
. In this case we have that X1

H1
→

Y 1
H′1
| · · · |Y mH′m is in Next(E,X1

H1
) and that T2 = Y 1

H′1
| · · · |Y mH′m |X

2
H2
| · · · |Xn

Hn
. By defini-

tion of T , we have the transition 〈{{X1
set(H1)

}}, {{Y 1
set(H′1)

, · · · , Y mset(H′m)}}〉 in PT−%(E,S).
This transition modifies the marking nokeys(T1) = {{X1

set(H1)
, · · · , Xn

set(Hn)}} in the
marking nokeys(T2) = {{Y 1

set(H′1)
, · · · , Y mset(H′m), X

2
set(H2)

, · · · , Xn
set(Hn)}}.

Assume now that T1 is a solution in TG(E,S) such that nokeys(T1) is modified in
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the marking m by some transition in T . By definition of T , this transition can be of two
kinds, either 〈{{XS}},]i∈{1,···,n}{{Y iSi

}}〉 or 〈{{XS , X ′S′}},]i∈{1,···,n}{{Y iSi
}}〉. We consider

only the first case, as the second one is treated similarly. We have that nokeys(T1) =
{{Xset(H), X

1
set(H1)

, · · · , X l
set(Hl)

}} (assuming T1 = XH |X1
H1
| · · · |X l

Hl
) with set(H) = S,

m = ]i∈{1,···,n}{{Y iSi
}} ] {{X1

set(H1)
, · · · , X l

set(Hl)
}} and that XH → Y 1

H′1
| · · · |Y nH′n is in

Next(E,XH) with Si = set(H ′i) for 1 ≤ i ≤ n. The same kind of transition can be
performed also in the (greater) solution T1, namely, T1 → Y 1

H′1
| · · · |Y nH′n |X

1
H1
| · · · |X l

Hl

is in TG(E,S). We conclude the proof observing that the thesis holds if we take T2 =
Y 1
H′1
| · · · |Y nH′n |X

1
H1
| · · · |X l

Hl
. In fact, nokeys(T2) = {{Y 1

set(H′1)
, · · · , Y nset(H′n), X

1
set(H1)

, · · · ,
X l

set(Hl)
}} = m.

As a consequence of the above theorem we have that the existence of a terminating
computation and the existence of a computation leading to a solution containing at least
one molecule of a given species are both decidable properties for BGF−%.

Corollary 6. Given (E,S) of BGF−%, we have that there exists a terminating compu-
tation in TG(E,S) if and only if there is a terminating computation in PT−%(E,S).

Proof. As in Corollary 4 considering Theorem 3 instead of Theorem 2.

Corollary 7. Given (E,S) of BGF−%, we have that there exists a computation leading
to a solution T that contains at least one molecule of a given species X, if and only if
there is a computation in PT−%(E,S) leading to a marking with a token in a place XS .

Proof. As in Corollary 5 considering Theorem 3 instead of Theorem 2.

As the existence of a terminating computation (resp. the existence of a computation
leading to a marking containing at least one token in a given place) is decidable in P/T
nets we have that termination (resp. the possibility to generate a molecule of a given
species) is decidable also in BGF−%. Thus we can conclude that BGF−% cannot be
Turing complete according to the Criterion 2 (resp. Criterion 3).

7. Conclusion

Turing-powerful mechanisms are not a requirement for building sophisticated nano-
machines. Yet, the existence of Turing-powerful mechanisms guarantees a certain level
of generality and flexibility in constructing machinery of any desired complexity, and
provides evolution with adaptable toolkits to build upon. This paper highlights the fact
that the elaborate nature of biomolecules increases system complexity in a finitary com-
binatorial way that qualitatively transcends the expressive power of any notation that
models at the level of ordinary chemical reactions between simple species. We have shown
that the biochemically-inspired operations of association and dissociation, formalized in a
very basic form, are sufficient to raise expressiveness to the level of Turing-completeness,
while finite sets of chemical reactions are not sufficient. In other words, finite program-
ming constructs that are Turing powerful are required to model biochemical systems but
not to model simple chemical systems.
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In our proof of Turing completeness an important role is played by the association
histories that, attached to each molecule, keep track of the currently active associations.
The information stored in the association histories indicates which dissociations can oc-
cur, as only previously associated molecules can give rise to a dissociation event. Despite
the relevance of association histories in the proof of Turing completeness that we have
presented, it is important to notice that Turing universality follows from the intended
meaning of the association and dissociation primitives, and does not rely on the notion of
association histories. In fact, one could define an alternative semantics for the association
and dissociation primitives in which association histories are replaced by, e.g., mecha-
nisms for the creation of fresh channels such as those in the π-calculus (Milner et al.
1992). In terms of the π-calculus, the creation of an association between two molecules
can be seen as the creation of a new channel, which is kept private between the two
associated molecules, and which is used only once on molecule dissociation.

The κ-calculus is another model for biology based on the notion of molecules that can
form complexes (Danos and Laneve 2004). The κ-calculus is reaction centric instead of
process centric, that is, the evolution of the system is governed by reactions that modify
the state and the bonds within a group of reacting molecules. Besides permitting more
than two molecules to interact, the rules in κ-calculus also allows for the specification
of expressive interactions not allowed in BGF. For instance, as already commented in
the Introduction, in κ-calculus reactions can be written that modify the internal state
of two complexed molecules without breaking the bond connecting them. If we include
a similar mechanism in BGF, for instance introducing a new pair of actions that allow
two associated molecules to interact without breaking the association, we claim that the
dissociation primitive is no longer necessary for Turing completeness of BGF. In fact, it
should be possible to model a register as a monotonically growing polymer composed of
active and inactive monomers: an increment adds an active monomer, while a decrement
changes the state of one monomer from active to inactive. A similar technique has been
used in (Delzanno et al. 2009) to prove that a fragment of the κ-calculus in which bonds
cannot be destroyed is still Turing complete. Some fragments of the κ-calculus without
bond destruction have been considered in (Delzanno et al. 2009) and revealed very in-
teresting properties: even if they are Turing complete some reachability properties (i.e.
the reachability of a solution that contains complexes with a given structure) turn out
to be decidable. These decidability results follow from the monotonic growth of com-
plexes. It is interesting to note that in BGF−%, the fragment without dissociation we
consider in Section 6, we cannot adopt the same technique to prove similar decidability
results because, due to splitting of molecules, a complex in BGF−% could also shrinks.
We leave the decidability of the reachability of a complex with a given structure as an
open problem for BGF−% that we plan to investigate in future research.

It is interesting to note that expressiveness boundaries, similar to those that we have
shown between notations for basic chemistry and notations for biochemistry, have been
proved also in the context of process calculi based on membrane interactions such as
endocytosis, exocytosis, fusion, and fission. In (Busi and Gorrieri 2006), Busi and Gor-
rieri prove that a basic process calculus including endoctytosis and exocytosis is Turing
complete, while this is not the case when only fusion and fission are considered. This
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is because endocytosis allows for the nesting of membranes with an unbounded depth,
while this is not possible when only fission and fusion are considered. In BGF, instead
of using membrane nesting, we consider a more basic association mechanism in order to
generate structures with unbounded length.

The boundary of Turing-completeness gets even more interesting at the quantitative,
approximate, level. For instance, work by Liekens and Fernando (Liekens and Fernando
2007) shows how to approximate in a language of discrete chemistry finite computations
of Register Machines with an error probability smaller than any given precision δ > 0.
Soloveichik et al. (Soloveichik et al. 2008), besides proving that in notations for discrete
chemistry it is not possible to precisely model any Turing powerful formalism, show also
how to approximate unbounded computations.

A consequence of their results is that it is always decidable whether the production of
a certain molecule is predicted by a model in a language of basic chemistry, while the
question whether the system is likely to produce that molecule is in general undecidable.

This opens interesting questions about the set of decidable properties for models in
the/a language of discrete chemistry. For instance, in (Zavattaro and Cardelli 2008) we
have considered the termination problem. We proved that abstracting away from the
stochastic semantics of the/a language of discrete chemistry, may termination (i.e. the
existence of a sequence of reactions leading to a state in which no reaction can fire) and
must termination (i.e. all maximal sequences of reactions lead to a terminated state) are
both decidable. On the other hand, when also the stochastic rates are considered, we
have that the probabilistic version of may termination (i.e. termination with probability
> 0) is still decidable while the probabilistic version of must termination (i.e. termination
with probability = 1) is no longer decidable.

We conclude the paper discussing how the results discussed in the previous paragraph
about quantitative models of chemistry, as well as the results proved in this paper, scale to
a possible stochastic version of the Biochemical Ground Form. The undecidability results
proved in (Soloveichik et al. 2008) and (Zavattaro and Cardelli 2008) on finite stochastic
chemical reaction networks (SCRNs) apply also to a stochastic version of BGF. In fact,
BGF is a calculus that strictly includes SCRNs. On the contrary, the decidability results
proved in (Soloveichik et al. 2008) and (Zavattaro and Cardelli 2008) do not hold in BGF
under a stochastic semantics. In fact, we have proved in this paper that the addition of
association and dissociation makes BGF expressive enough to model Random Access
Machines deterministically.

The encoding of Random Access Machines that we have presented exploits determin-
istic processes of BGF and BGF−τ?!. This allows us to conclude that the probabilistic
versions of may and must termination (i.e. termination with probability > 0 or with
probability = 1, respectively) both turn out to be undecidable in a stochastic version
of these two calculi. In fact, for deterministic processes the two problems coincide, and
correspond to the classical halting problem we have proved undecidable for both BGF
and BGF−τ?!.

The decidability results we have proved for BGF−& and BGF−% could be rephrased
in a stochastic setting as follows: in stochastic versions of BGF−& and BGF−% it is
decidable whether a system can terminate with probability > 0 (resp. a molecule of a
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given species can be generated with probability > 0). In fact, the decidability result we
have proved in this paper deal with the problem of checking the existence of a finite
computation leading to a terminated state (resp. a state containing a molecule of a given
species). In a stochastic setting this corresponds to checking whether a terminated state
(resp. a state containing a molecule of a given species) can be reached with probability
> 0.
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